1.3 Use Midpoint and Distance Formulas

Day 1: Midpoint

Day 2: Distance

*midpoint - The midpoint of a segment is the point that divides the segment into two congruent segments

*segment bisector- A point, ray, line, line segment, or plane that intersects the segment at its midpoint

** A midpoint or segment bisects a segment

M is the midpoint of \overline{AB} . So, $\overline{AM} \cong \overline{MB}$ and $\overline{AM} = \overline{MB}$.

 \overrightarrow{CD} is a segment bisector of \overline{AB} . So, $\overline{AM} \cong \overline{MB}$ and AM = MB.

EXAMPLE 1 Find segment lengths

SKATEBOARD In the skateboard design, \overline{VW} bisects \overline{XY} at point T, and XT = 39.9 cm. Find XY.

EXAMPLE 2 Use algebra with segment lengths

ALGEBRA Point M is the midpoint of \overline{VW} . Find the length of \overline{VM} .

In Exercises 1 and 2, identify the segment bisector of \overline{PQ} . Then find PQ.

Segment Bisector:

PQ: _____

Segment Bisector:

PQ: _____

KEY CONCEPT

For Your Notebook

The Midpoint Formula

The coordinates of the midpoint of a segment are the averages of the *x*-coordinates and of the *y*-coordinates of the endpoints.

If $A(x_1, y_1)$ and $B(x_2, y_2)$ are points in a coordinate plane, then the midpoint M of \overline{AB} has coordinates

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$
.

EXAMPLE 3 Use the Midpoint Formula

a. FIND MIDPOINT The endpoints of \overline{RS} are R(1, -3) and S(4, 2). Find the coordinates of the midpoint M.

EXAMPLE 3 Use the Midpoint Formula

b. FIND ENDPOINT The midpoint of \overline{JK} is M(2, 1). One endpoint is J(1, 4). Find the coordinates of endpoint K.

Day 1 Assignment: p. 19 (2-22 all, 25-27 all)

Day 2: Distance Formula

KEY CONCEPT

The Distance Formula

If $A(x_1, y_1)$ and $B(x_2, y_2)$ are points in a coordinate plane, then the distance between A and B is

$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

For Your Notebook

The Distance Formula is based on the *Pythagorean Theorem*, which you will see again when you work with right triangles in Chapter 7.

Distance Formula

$$(AB)^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

$A(x_{1}, y_{1}) = A(x_{2}, y_{2})$ $| y_{2} - y_{1} |$ $C(x_{2}, y_{1})$

Pythagorean Theorem

$$c^2 = a^2 + b^2$$

EXAMPLE 4

Standardized Test Practice

What is the approximate length of \overline{RS} with endpoints R(2,3)and S(4, -1)?

- **A** 1.4 units
- **B** 4.0 units **C** 4.5 units **D** 6 units

Day 2 Assignment: p. 20 (31-43 all, 48, 49, 55-64 all)

Quiz tomorrow! Sections 1-3! Practice quiz on p. 22 (1-8)

Know your terms, how they are named, what symbols we use. Know the midpoint formula and distance formula and how to use them. Know how the segment addition postulate works.