9.1 Translate Figures and Use Vectors

In Lesson 4.8, you learned that a transformation moves or changes a figure in some way to produce a new figure called an image. Another name for the original figure is the preimage.
Recall that a translation moves every point of a figure the same distance in the same direction. More specifically, a translation maps, or moves, the points P and Q of a plane figure to the points P^{\prime} (read " prime") and Q^{\prime}, so that one of the following statements is true:

- $P P^{\prime}=Q Q^{\prime}$ and $\overline{P P^{\prime}} \| \overline{Q Q^{\prime}}$, or
- $P P^{\prime}=Q Q^{\prime}$ and $\overline{P P^{\prime}}$ and $\overline{Q Q^{\prime}}$ are collinear.

EXAMPLE 1 Translate a figure in the coordinate plane

Graph quadrilateral $A B C D$ with vertices $A(-1,2), B(-1,5), C(4,6)$, and $D(4,2)$. Find the image of each vertex after the translation $(x, y) \rightarrow(x+3, y-1)$. Then graph the image using prime notation.

ISOMETRY An isometry is a transformation that preserves length and angle measure. Isometry is another word for congruence transformation (page 272).

EXAMPLE 2 Write a translation rule and verify congruence

Write a rule for the translation of $\triangle A B C$ to $\triangle A^{\prime} B^{\prime} C^{\prime}$. Then verify that the transformation is an isometry.

THEOREM

For Your Notebook

Theorem 9.1 Translation Theorem

A translation is an isometry.
Proof: below; Ex. 46, p. 579

VECTORS Another way to describe a translation is by using a vector. A vector is a quantity that has both direction and magnitude, or size. A vector is represented in the coordinate plane by an arrow drawn from one point to another.

KEY CONCEPT

For Your Notebook

Vectors

The diagram shows a vector named $\overrightarrow{F G}$, read as "vector $F G$."

The initial point, or starting point, of the vector is F.
horizontal component
The component form of a vector combines the horizontal and vertical components. So, the component form of $\overrightarrow{F G}$ is $\langle 5,3\rangle$.

ExAMPLE 3 Identify vector components

Name the vector and write its component form.
a.

b.

EXAMPLE 4 Use a vector to translate a figure

The vertices of $\triangle A B C$ are $A(0,3), B(2,4)$, and $C(1,0)$. Translate $\triangle A B C$ using the vector $\langle 5,-1\rangle$.

EXAMPLE 5 Solve a multi-step problem

NAVIGATION A boat heads out from point A on one island toward point D on another. The boat encounters a storm at $B, 12$ miles east and 4 miles north of its starting point. The storm pushes the boat off course to point C, as shown.

a. Write the component form of $\overrightarrow{A B}$.
b. Write the component form of $\overrightarrow{B C}$.
c. Write the component form of the vector that describes the straight line path from the boat's current position C to its intended destination D.

Assignment:
9.1 worksheet

Practice

For use with pages 572-579

Use the translation $(x, y) \rightarrow(x+6, y-3)$.

1. What is the image of $A(3,2)$?
2. What is the image of $B(-4,1)$?
3. What is the preimage of $C^{\prime}(2,-7)$?
4. What is the preimage of $D^{\prime}(-3,-2)$?

The vertices of $\triangle A B C$ are $A(-1,1), B(4,-1)$, and $C(2,4)$. Graph the image of the triangle using prime notation.
5. $(x, y) \rightarrow(x-3, y+5)$

6. $(x, y) \rightarrow(x-4, y-2)$

$\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a translation. Write a rule for the translation. Then verify that the translation is an isometry.
7.

8.

Name the vector and write its component form.

9.

10.

11.

Use the point $P(5,-2)$. Find the component form of the vector that describes the translation to \boldsymbol{P}^{\prime}.
12. $P^{\prime}(2,0)$
13. $P^{\prime}(8,-3)$
14. $P^{\prime}(0,4)$
15. $P^{\prime}(-5,-4)$

The vertices of $\triangle A B C$ are $A(1,2), B(2,6)$, and $C(3,1)$. Translate $\triangle A B C$ using the given vector. Graph $\triangle A B C$ and its image.
16. $\langle 8,2\rangle$

17. $\langle-7,-3\rangle$

Find the value of each variable in the translation.
18.

19.

20. Navigation A hot air balloon is flying from point A to point D. After the balloon travels 6 miles east and 3 miles north, the wind direction changes at point B. The balloon travels to point C as shown in the diagram.

a. Write the component form for $\overrightarrow{A B}$ and $\overrightarrow{B C}$.
b. The wind direction changes and the balloon travels from point C to point D. Write the component form for $\overrightarrow{C D}$.
c. What is the total distance the balloon travels?
d. Suppose the balloon went straight from A to D. Write the component form of the vector that describes this path. What is this distance?

