### 9.3 Perform Reflections

In Lesson 4.8, you learned that a reflection is a transformation that uses a line like a mirror to reflect an image. The mirror line is called the line of reflection.

A reflection in a line $m$ maps every point $P$ in the plane to a point $P^{\prime}$, so that for each point one of the following properties is true:

- If $P$ is not on $m$, then $m$ is the perpendicular bisector of $\overline{P P^{\prime}}$, or
- If $P$ is on $m$, then $P=P^{\prime}$.


Point $P$ not on $\boldsymbol{m}$


Point $P$ on $m$

## EXAMPLE 1 Graph reflections in horizontal and vertical lines

The vertices of $\triangle A B C$ are $A(1,3), B(5,2)$, and $C(2,1)$. Graph the reflection of $\triangle A B C$ described.
a. In the line $n: x=3$

b. In the line m: $y=1$


## EXAMPLE 2 Graph a reflection in $\boldsymbol{y}=\boldsymbol{x}$

The endpoints of $\overline{F G}$ are $F(-1,2)$ and $G(1,2)$. Reflect the segment in the line $y=x$. Graph the segment and its image.


COORDINATE RULES You can use coordinate rules to find the images of points reflected in four special lines.

## KEY CONCEPT

## For Your Notebook

## Coordinate Rules for Reflections

- If $(a, b)$ is reflected in the $x$-axis, its image is the point $(a,-b)$.
- If $(a, b)$ is reflected in the $y$-axis, its image is the point $(-a, b)$.
- If $(a, b)$ is reflected in the line $y=x$, its image is the point $(b, a)$.
- If $(a, b)$ is reflected in the line $y=-x$, its image is the point $(-b,-a)$.


## EXAMPLE 3 Graph a reflection in $\boldsymbol{y}=-\boldsymbol{x}$

Reflect $\overline{F G}$ from Example 2 in the line $y=-x$. Graph $\overline{F G}$ and its image.
The endpoints of $\overline{F G}$ are $F(-1,2)$ and $G(1,2)$.


REFLECTION THEOREM You saw in Lesson 9.1 that the image of a translation is congruent to the original figure. The same is true for a reflection.

## THEOREM

For Your Notebook
Theorem 9.2 Reflection Theorem
A reflection is an isometry.


Proof: Exs. 35-38, p. 595
$\triangle A B C \cong \triangle A^{\prime} B^{\prime} \mathbf{C}^{\prime}$

## EXA MPLE 4 Find a minimum distance

PARKING You are going to buy books. Your friend is going to buy CDs. Where should you park to minimize the distance you both will walk?


Assignment:
9.3 ws

For use with pages 588-596

## Graph the reflection of the polygon in the given line.

1. $x$-axis

2. $y$-axis

3. $x=-1$

4. $y=1$

5. $y=-x$

6. $y=x$


## Use matrix multiplication to find the image. Graph the polygon and

 its image.$$
A \quad B \quad C
$$

7. Reflect $\left[\begin{array}{rrr}-3 & 1 & 6 \\ 4 & 7 & 2\end{array}\right]$ in the $x$-axis.

8. Reflect $\left[\begin{array}{rrrr}A & B & C & D \\ 2 & 5 & 7 & 1 \\ 6 & 4 & -5 & -3\end{array}\right]$ in the $y$-axis.

|  |  |  |  |  | y |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | - |  |  |  |  |  |
|  |  |  |  | 2 |  |  |  |  |  |
|  |  |  |  |  | 2 |  |  | $x$ |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |

rite a matrix for the polygon. Then find the image matrix that represents e polygon after a reflection in the given line.
). $x$-axis

10. $y$-axis

11. $x$-axis


## Find point $C$ on the $\boldsymbol{x}$-axis so $A C+B C$ is a minimum.

12. $A(2,-2), B(11,-4)$
13. $A(-1,4), B(6,3)$
14. $A(-3,2), B(-6,-4)$


 d $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.
;. In $y=1$, then in $y=-2$

15. $\operatorname{In} x=4$, then in $y=-1$

16. In $y=x$, then in $x=-2$

17. Laying Cable Underground electrical cable is being laid for two new homes. Where along the road (line $m$ ) should the transformer box be placed so that there is a minimum distance from the box to each of the homes?

